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Abstract: Forest fires are one of the main environmental threats in Chile. Fires in this Mediterranean
climate region frequently affect native forests and exotic plantations, including in several cases urban
and rural settlements. Considering the scarcity of information regarding the fire response dynamics
of tree species that are frequently affected by fires, this study aims to establish a flammability
classification according to the evolution of the fire initiation risk presented by the most affected forest
species in the Valparaíso region. Three exotic species, Eucalyptus globulus, Pinus radiata, and Acacia
dealbata, and two native species, Cryptocarya alba and Quillaja saponaria, were studied. Flammability
assays indicate that E. globulus, A. dealbata, and C. alba are extremely flammable, whereas P. radiata
and Q. saponaria are flammable. Furthermore, E. globulus and A. dealbata have the highest heating
values while Q. saponaria has the lowest values. The extreme flammability of E. globulus, A. dealbata,
and C. alba indicates a high susceptibility to ignite. Furthermore, the high heat of combustion of
E. globulus and A. dealbata can be associated with a high energy release, increasing the risk of fires
spreading. In contrast, Q. saponaria has the lowest predisposition to ignite and capacity to release
heat. Accordingly, this work shows that all studied tree species contain organic metabolites that are
potentially flammable (sesquiterpenes, aliphatic hydrocarbons, alcohol esters, ketones, diterpenes,
and triterpenes) and can be considered as drivers of flammability in vegetation. Finally, these
preliminary results will aid in the construction of more resilient landscapes in the near future.

Keywords: flammability; fire behavior; forest fire; sclerophyllous species; organic metabolites

1. Introduction

Forest fires are one of the most frequent and important disturbances and environ-
mental threats to forest ecosystems at both a local and global scale [1]. Over the last few
decades, wildfires have deeply affected human lives and public infrastructure, risking
public health by air pollution from wildfire smoke, a complex mixture of pollutants which
impacts communities due to the emission of particulate matter (PM10, PM2.5 and PM1),
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carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), sulphur dioxide (SO2), and
polycyclic aromatic hydrocarbons (PAHs), among others [2–5]. Among the effects of forest
fire emissions are contributions to the greenhouse effect, local atmospheric pollution events,
increased cardiorespiratory afflictions and increased amounts of aerosols that are capable of
producing significant damages to ecosystems and a population’s health [6–9]. In addition
to the physical impacts, there are psychological and psychiatric impacts associated with
these disasters [5], such as post-traumatic stress [10] or identity and emotional problems
resulting from drastic changes to the landscape and the destruction of livelihoods [11].

Moreover, there has been an increase in the number of wildland fires and affected
areas, primarily in Mediterranean regions [12–14]. For example, in 2017, the number
of forest fires in Europe increased by almost 200% compared to the average of the last
decade, with Spain, Portugal, Greece, Italy, and France regularly affected by disasters due
to fire [14]. In addition to Mediterranean areas, the effects of forest fires have increased in
other regions of the world. For example, in Alaska, during the last decade, 2.5-times more
surface was burnt compared to the previous decade. In 2019 alone, a total of 378 fires were
registered, affecting 2,525,356 acres [15]. In addition, California registered one of its most
destructive and deadly fires during the period of 2018–2019, affecting more than 1.2 million
hectares [16,17]. In Australia, more than 27 million hectares were affected in September
2019, with the start of the fire season being much earlier compared to previous years [18].
Although more than 90% of forest fires worldwide are related to anthropogenic causes,
climatic factors have intensified the spread and destructive power of wildfire events [19–21].
These climatic factors correspond primarily to high summer temperatures and reduced
levels of precipitation, resulting in long drought periods that decrease the water content of
plants [20–22].

Chile is home to approximately 136,000 km2 of native forest and 22,000 km2 of forest
plantations. As wildland fires are a common threat during the summer season, there
is a need to address and investigate this environmental challenge. The regions most
affected by forest fires are located in the central and southern regions of the country, which
have a Mediterranean climate characterized by periods of intense rain during the winter
and very dry summers [19]. The largest and most damaging forest fires in the history
of Chile took place in the period 2017–2018. In total, around 5760 km2 of forest area
was burned between the Valparaíso and Araucanía regions, which was five times greater
than the period with the previous largest affected area (2014–2015). During the season of
2017–2018, forestry plantations (223,650 ha), native forests (60,995 ha), native shrublands
(187,906 ha) and rural properties [20,21,23] were affected. In three months, more than
1157.1 km2 of native sclerophyllous forests and forest plantations were burned, with more
than 4000 people engaged in combating fire [23] and more than 9.5 million people exposed
to high concentrations of particulate matter, causing an estimated 76 premature deaths and
209 additional hospital admissions for respiratory and cardiovascular conditions [24].

Valparaíso, the region of the country with the third highest occurrence of wildfires
between 1977 and 2020 [23], was also affected, including native and endemic forest species
such as Cryptocarya alba, Quillaja saponaria, and Lithraea caustica (25,402 km2 burnt), as well
as forestry plantations of Eucalyptus globulus (6448 km2 burnt) and Pinus radiata (0.283 km2

burnt) [23]. Based on these data, native vegetation was most affected in terms of burnt sur-
face, primarily through the degradation of sclerophyllous forest ecosystems [25]. Moreover,
in the Valparaíso region, a wildfire called “La Engorda—Peñuelas Lake National Reserve
(PLNR)” affected the cities of Valparaíso and Quilpué for eight consecutive days (January
14 to 21, 2021). This disaster consumed an area of 3900 ha of grassland, scrub, eucalyptus
and native forest species. Due to the rapid spread of flames, the National Emergency Office
(ONEMI) requested the preventive evacuation of the habitants of different residential
sectors of Quilpué, including Los Pinos, Colinas de Oro, and Teniente Serrano, among
others [26].

It should be noted that the most influential climatic factors include, in addition to
the increase in temperature and the occurrence of heat waves, the fact that the reduction
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in the level of precipitation generates drought conditions that are directly related to the
frequency and intensity of fire events [27]. As a matter of fact, Chile has seen an increase in
the occurrence of fire events after the longest and intensive drought recorded during the
last millennium, with an average rainfall deficit of 20–40% since 2010 [28]. This prolonged
drought caused hydric stress in vegetation, thereby resulting in a large amount of highly
flammable material that is susceptible to ignition [29,30].

At the same time, an increase in the occurrence and severity of fire events is projected
based on the prediction of adverse weather conditions. Specifically, projections of climate
variability in Chile estimate a decrease of up to 15% in precipitation levels and an increase
in temperatures of between 0.5 and 1.5 ◦C towards 2030 and more than 2.0 ◦C by the end
of the 21st Century, with a 40% reduction in precipitation and a 4 ◦C increase in average
temperatures [31–33]. This, combined with population and urban growth, results in a
higher level of exposure to socio-environmental disasters, generating the need to develop
strategies and tools to reduce the vulnerability of the population to the threat of fire,
thus improving the adaptive capacity and resilience of communities while conserving the
ecosystem services of the Mediterranean forest in the context of sustained climate change.

In this context, it is crucial to study the natural factors that influence the flammability
of vegetation, particularly those intrinsic factors that act as fire drivers, in order to develop
an effective planning and management approach for territories vulnerable to fire events,
such as those in the wildland–urban interface (WUI), rural sectors, and conservation areas.

The most commonly used definition for the flammability of forest species was de-
scribed by Anderson in 1970 [34] based on the following three components: ignitability,
sustainability, and combustibility. Subsequently, Martin et al. [35] considered a fourth
phenomenon called consumability [36]. Furthermore, a flammability index (FI) was pro-
posed by Valette in 1990 [37] for Mediterranean forest species, which considers ignition
time, flame duration, and burning time. This index is used in different parts of the world
as a simple technique for evaluating flammability parameters and is still widely used by
various authors [38–47] to study and classify tree species according to their flammability
in order to find those that are less flammable and useful for forest fire risk management.
Simultaneously, there is a need to understand the relationship between forest fuels and
their thermochemical parameters, including heating values, to be able to include them in
wildfire risk evaluations [48–50]. Pausas et al. [50] suggested that measures of flamma-
bility should include a number of forest fuel characteristics that influence the probability
of ignition and fire behavior and encompass three main components: ignitability, heat
release, and fire spread rate. In addition to climatic factors that influence the development
of fire, the authors suggest that the three components of flammability can explain the
ecological impact generated by forest fires. For example, heat release is often related to
latent heat, which increases soil temperature and influences the probability of fire-related
damage [50]. Furthermore, the heating value of a fuel can be associated with the rate at
which a fire spreads, as it represents the energy transmitted along the fuel material or to
neighboring tree species in a forest context [51,52]. However, in addition to the heating
value, which is related to the composition and structure of the fuel, other factors such
as humidity, oxygen, and environmental conditions also influence the spread of fire [51].
Moreover, internal factors of vegetation, such as physical (leaf thickness, surface area,
and perimeter, among others) and chemical properties (lignin content, moisture content,
mineral content, and volatile content) of leaves and leaf litter are wildfire drivers through
their effect on flammability [53]. Among these, the chemical composition is one of the
most important natural factors that influences the flammability of plants, particularly
terpene content (monoterpenes and sesquiterpenes), where it has been postulated that
the initiation and spread of forest fires is directly influenced by the essential oils/resins
contained in woody species, due to the accumulated terpenes within this type of tree [54].
There is scientific evidence that terpenes increase the risk of forest fires. Volatile terpenes
(monoterpenes and sesquiterpenes) have a high degree of flammability due to their high
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calorific values, low flash points, and low flammability limits, increasing the flammability
of vegetation [38,42,55–57].

The effort to associate natural factors with the flammability of vegetation has allowed
an understanding of fire ecology and for researchers to develop tools and methodologies
for forest management planning that can range from non-spatial conceptual models to
techniques that include linear programming, binary search, cost–benefit analysis, simu-
lation, and heuristics, among others [58]. Recently, Molina et al., 2017 [59] proposed a
methodology based on the risk evaluation for forest fires in wildland–urban interfaces
(WUI) in Mediterranean areas. Through this model, an ignition index that indicated a
fuel’s availability to ignite and spread through tree species was developed. This index is
calculated based on the probability of ignition (meteorological conditions), the ignition
coefficient (fuel characteristics), and flammability. Furthermore, different ways to deter-
mine the behavior of forest fires have been studied through simulation models [59–63],
where the fire parameters (linear propagation velocity, first-line intensity, and flame length)
obtained by Castillo et al., 2020 [63] were comparable with the areas under study. The
behavior of fire (intensity, gravity) can be obtained from environmental features, climate
change, and vegetation characteristics, such as moisture content, heating value, and the
potential for fire to spread. However, flammability parameters that could possibly improve
efficiency in order to better understand the dynamics of vegetation responses in a forest
fire have not yet been considered. Moreover, Castillo et al., 2020 [63] emphasize that the
importance of diversity in the physical properties of native and exotic forest species has
not yet been addressed. Based on the results, high severity and damage as a result of forest
fires are predicted, principally in areas with higher amounts of dry biomass.

The National Forest Corporation of Chile (CONAF) uses an ignition probability index
as a wildfire prevention strategy, based on a matrix of meteorological data that includes
solar radiation and temperature, as well as the humidity of the forest fuel, based on
geospatial data (at a global scale) [64]. However, experimental data on the thermochemical
properties (flammability, heating values), moisture, and terpene content of both native
and exotic forests in Chile are scarce, highlighting the need to research these properties
to expand and deepen our existing knowledge and to improve fire hazards, as well as to
develop short- and long-term fire prevention and management strategies.

In Chile, little is known about the flammability of different tree species. This issue
has been an intense topic in the discussion between academics, foresters, and the forest
industry. However, there is no information about the flammability of the main exotic and
native species of trees covering the Chilean landscapes, especially in the south-central zone,
where most of the population settlements and the forest industry are located.

In this context, the objective of this research was to develop a study of the thermochem-
ical properties (flammability, heating value, and flash point) of five of the most affected
sclerophyllous tree species by wildfires in the Valparaíso region [23] and to evaluate the
relationship between these properties with the flammability drivers (organic metabolites
and moisture content) present in the vegetation. This information could contribute to the
improvement of fire models and fire forecasting as the flammability of leaves in relation to
their chemical composition is highly relevant, due to the inadequate knowledge available
in the subject. This research would help to create fire management tools, such as a fire risk
classification method for native species and the use of low-flammability vegetation as a
natural fence for specific areas and/or plantations, and to develop mitigation strategies,
as well as for the management of forest fires in order to reduce the impact of this type
of event.

2. Materials and Methods
2.1. Study Area and Leaf Sampling

The sample collection was carried out in the Peñuelas Lake National Reserve (PLNR)
during the summer of 2018–2019. The reserve location, sampling site, forest species under
study, fire regime on a regional scale basis from historical data (from 1985 to 2020), and fire
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activity within the national reserve during the summer season (2011–2012 to 2018–2019)
are depicted in Figure 1.
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Figure 1. Peñuelas Lake National Reserve (PLNR): (A) geographic location, sampling site, and detail
of species under study, (B) monthly sum of historical burned area and fire events from 1985 to 2020 in
Valparaíso Region [23], and (C) fire regime reported by the administration of PLNR for the summer
seasons of 2011–2012 to 2018–2019.

Reports of regional-scale forest fire activity based on historical data (1985 to 2020,
see Figure 1B) indicate that more than 80% of wildfire events in the Valparaíso region
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occur in summer periods [23], where 96% of these events are concentrated in the period
November–April. Accordingly, the highest amount of burnt surface is concentrated in the
summer period, which shows a consistency over time regarding historical data.

The geo-climatic characteristics and distribution of plant species, in addition to the impact
of fire in the area, have been described by Guerrero et al., 2020 [6] and Hauenstein et al. [65].
During 2018, the study area registered an average annual temperature of 13.4 ◦C and a total ac-
cumulated precipitation of 257.1 mm, according to the database of the Rodelillo Meteorological
Station, located 13 km north of the sampling location (National code 330007, Directorate Mete-
orological of Chile) [66]. Extreme meteorological conditions were registered in the Valparaíso
region between 2017 and 2019. Figure 2 presents data from Rodelillo Station corresponding to
daily maximum temperatures and thresholds (90th percentile) of heat waves in Chile during
2017 (Figure 2A), 2018 (Figure 2B), and 2019 (Figure 2C). Figure 2D presents the daily evolution
of accumulated precipitation between 2017 and 2019. Regarding the daily maximum tempera-
ture, a sustained increase in the occurrence of heat wave events was observed, registering 3,
5, and 10 events during 2017, 2018, and 2019, respectively. The latter year also saw reduced
precipitation levels.
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perature (A–C) and daily total precipitation level (D) according to the database from Rodelillo Station
(National code 330007, Directorate Meteorological of Chile). Gray areas represent the occurrence of
heatwaves during the period under study.
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Five woody species were sampled, comprising two native species (Q. saponaria and C.
alba) and three exotic species (E. globulus, P. radiata, and A. dealbata). These species were
selected as they are representative in the sclerophyllous forest ecosystem and the most
affected forest species by wildfires in the area. In addition, these species are the most
abundant in the Valparaíso region and also in the sampling site of this research (PLNR),
with 71% E. globulus, 21% P. radiata, 3% A. dealbata, 1% Q. saponaria, and 1% C. alba in the
area [6].

Fully expanded, healthy leaves were collected from the outer exposed plant canopy,
using the procedure described by Guerrero et al., 2020 [6] in terms of sun exposure.

The variation in the flammability of live foliage is critical given that leaves are one of
the first structures to ignite [67] and contribute a large amount of fuel for forest fires [68].
Leaves have significant importance in spreading fire at the landscape scale [69]. Moreover,
the fluctuation of leaf flammability among forest species provides opportunities for wild-
land fires to expand horizontally within a plant stratum and also vertically to the upper
canopy [70].

For leaf collection, mixed canopy sampling was developed to capture intraspecific
differences derived from leaf exposure to sun and shade. In particular, plants have evolved
a variety of morpho-physiological and biochemical adaptations that optimize the inter-
ception, absorption, and processing of light to which leaves are exposed. In this case,
sun-exposed leaves are small and thick, with well-developed palisade tissue and higher
stomatal density, while shaded leaves maximize light capture but lower the maintenance
costs of excess photosynthetic machinery, producing thinner, lighter leaves with a larger
specific area. Furthermore, shaded leaves show evidence of higher chlorophyll concentra-
tions, higher ATPase activity, and lower Rubisco content compared to sun leaves [71,72].

For each species under study, 600 leaves were collected from three different sections
of the tree according to sun exposure (200 leaves from each section of its canopy: sun,
sun/shadow, and shadow (see Figure 3)), gathering a total of 3000 leaves per species, which
were stored in hermetically sealed plastic bags to avoid damping. Each bag was labeled
with the species name, section, and collection date. To maintain freshness, leaves were
stored in a container with cooling gel before further analysis in the laboratory.
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2.2. Flammability Measurements

To evaluate the flammability of the collected leaves, flammability tests were carried
out using a methodology developed by various researchers [37–46,73,74], based on the use
of a 500 W epiradiator (model 534 RC2, Quartz Alliance, France).

For each species, 50 leaf samples (each one of 1.0 ± 0.1 g) were placed on the surface
of the epiradiator with a mean temperature of the radiative surface of 440 ± 9 ◦C with a
coefficient of variation of 2%. Additionally, a pilot flame was added at a height of 4 cm
above the radiative surface to ignite the mixture of volatile compounds resulting from
the thermal degradation of the plant material. The parameters of ignition time (IT), flame
duration (FD), and burning time (BT) were recorded, and an arithmetic mean of the 50 tests
was then obtained for each tree species. Each procedure was carried out without direct
handling, thus avoiding any modification of the leaf properties. The flammation frequency
(Fr) for each species was calculated as the fraction of positive tests with respect to the total
number of tests (n = 50). Tests were considered positive when flammation occurred in less
than 1 min. If successive ignitions occurred and the duration of the first flame was equal to
or less than 10 s, only the time of occurrence of the second ignition was considered for the
validation of the test [37].

Across all tests, IT was considered as the time from the moment of contact between
the leaf sample and the radiant surface of the epiradiator until the flammation of the plant
material occurred. Subsequently, FD was taken as the time from flame ignition until its
total disappearance. Finally, BT reflected the time required for each sample particle to be
consumed, until the disappearance of the small embers. From these parameters, Valette’s
flammability index (FI) [37] was used to classify the flammability of the leaves of each
species. This index was calculated from the average IT and Fr values, (Table 1), and was
a dimensionless parameter whose value ranged from zero (very low flammable) to five
(extremely flammable) depending on the flammability of the material.

Table 1. Flammability index 1 (FI) as a function of flammation frequency (Fr) and mean ignition time (IT).

IT (s)
Fr (%)

100–95 94–90 89–85 84–80 < 50

< 12.5 5 4 3 3 1

12.5–17.5 4 3 3 2 1

17.5–22.5 3 3 2 2 0

22.5–27.5 3 2 2 1 0

27.5–32.5 3 2 2 1 0

>32.5 3 1 2 0 0
1 Valette´s classification [37]: very slightly flammable (FI = 0), slightly flammable (FI = 1), moderately flammable
(FI = 2), flammable (FI = 3), very flammable (FI = 4), and extremely flammable (FI = 5).

2.3. Heat of Combustion

The heating value is the amount of heat that is released in the complete combustion
process per unit mass of fuel in an oxygen bomb calorimeter [54]. The higher heating
value (HHV) and lower heating value (LHV) were obtained at a constant pressure by
quantifying the change in the enthalpy of combustion with and without condensed water,
respectively. The ASTM D240 procedure (a standard test method for the determination of
the heat of combustion of liquid hydrocarbon fuels by a bomb calorimeter) [75] was used to
determine both heating values for all leaf samples. Prior to determining the heating value,
leaves were dried in a thermostatic oven at 110 ± 5 ◦C for 24 h and stored in a desiccator
under environmental conditions until reaching room temperature. To obtain the HHV, dry
samples (0.5 g) were burned in a Parr 1261 bomb calorimeter (Parr Instrument Co., Moline,
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IL, USA) operating under an isoperibolic process [75]. The HHV was calculated using
Equation (1) as follows:

HHV =
k · ∆T

m
− Q (1)

where HHV corresponds to the high heating value (MJ kg−1), k is the calorific capacity of
the calorimeter (MJ ◦C−1), ∆T is the temperature difference obtained when heating the
water cooling temperature (◦C), m is the mass of dry leaves (kg), and Q is the heat released
(MJ kg−1).

To obtain the LHV, dry samples (1.0 g) were burned in a Junkers calorimeter under
adiabatic conditions [75]. In contrast to HHV, the steam generated from combustion was
entrained in a trap with calcium chloride to absorb moisture and be quantifiable by mass
difference. To calculate the heat of vaporization, the following equation was used:

Cv =
mc · h f g

m
(2)

where Cv corresponds to the heat of vaporization (MJ kg−1), mc is the mass of water
adsorbed by the sodium chloride trap, h f g is the enthalpy of vaporization (MJ kg−1), and
m corresponds to the mass of the burnt sample (kg). From the above, it was possible to
obtain the LHV (MJ kg−1) using the following equation:

LHV = HHV − Cv (3)

2.4. Flash Point

The flash point (FP) is defined as the lowest temperature at which the vaporization
of a volatile substance occurs, forming a flammable mixture with air in the presence of a
continuous ignition source. According to ASTM D-92-72 (the standard test method for the
determination of flash and fire points by a Cleveland open-cup), an open-cup Cleveland
device was used, consisting of a heating dish, a thermometer (−6 to 400 ◦C), and an ignition
source [76]. Leaves were added to the open-cup until it was filled and placed over the
heating dish. The thermometer was vertically set over the cup with the tip positioned
6.6 mm from the bottom. Measurements were made at a heating rate of 15 ◦C min−1. The
flash point was recorded as the temperature when a flame inside the cup caused a flash [6].

2.5. Chemical Extraction and Analysis

The leaves of the selected species were subjected to three extraction stages: Soxhlet
extraction, liquid–liquid extraction, and concentration by rotavapor. Subsequently, the
extracts were subjected to analysis by gas chromatography coupled to mass spectrometry
(GC/MS). A mass sample of 17 g of leaves was weighed for each species and subjected to
Soxhlet extraction with 80 mL of cyclohexane at 80 ◦C for 4 h. Subsequently, the extract
solution was cooled to room temperature. To remove residual solvent, the extract solution
was concentrated to dryness using a rotatory evaporator. This procedure was adapted
from Ormeño et al., 2011 [77] and Wu et al., 2015 [78]. The concentrate from the Soxhlet
extraction was transferred to a separation funnel where 80 mL of methanol and 50 mL
of cyclohexane were added (this step was repeated twice, modifying the volumes). Two
fractions were obtained for each species: one with polar compounds and the other with
nonpolar compounds. The fractions were concentrated at room temperature to dryness
and the final mass of each extract fraction was determined. The experimental error of the
extraction process was measured as 5%.

The separation of the volatile (nonpolar compounds) and nonvolatile (polar com-
pounds) phases was optimized based on the studies of Gonçalves et al., 2014 [79] and
Jiang, 2005 [80]. Essential oil extraction (EO) yields were obtained by summing the polar
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and nonpolar phases. EO yield is expressed as the percentage of the essential oil weight
according to Equation (4):

EOs(%w/w) =
mEOs
mLV

·100 (4)

where mEOs is the weight of essential oils obtained after extraction (g) and mLV is the weight
of fresh leaf sample prior to extraction (g).

As extracts were obtained, the compounds present in the nonpolar fraction were
analyzed and identified by GC/MS using a GC/MS-QP2010 Ultra combination (Shi-
madzu, Kyoto, Japan) equipped with an RTX-5MS nonpolar fused silica capillary column
(30 m × 0.32 mm ID, 0.25 µm thickness; Restek, Bellafonte, PA, USA). The carrier gas was
helium at a flow rate of 1 mL min−1. The oven was programmed from 50 ◦C (5 min hold)
to 300 ◦C at 10 ◦C min−1 (30 min hold). The injection was carried out in split mode, and
the injector temperature was 250 ◦C. The mass spectrometer operated in full-scan mode
(scan range m/z 35–500, scanning frequency 0.3 s/scan) at 70 eV.

Compounds were identified by comparing their mass spectra and retention indices [81]
with those reported in databases (NIST11 for MS, Waterman, 1996 [82] for retention indices).

2.6. Moisture Content

A mass of 10 g of fresh leaves was weighed on an analytical balance (AS 220.R2,
Radwag) and placed in a thermostatic oven (digital drying oven, model JK-DO-9030A, JKI,
China) at 110 ◦C for 24 h to ensure total loss of water. Afterward, samples were weighed
and the moisture content (MC), defined as the weight of water as a function of dry weight,
was determined according to Equation (5) [6,38,43,45,83,84]:

MC(%) =
mLV − mDR

mDR
·100 (5)

where MC is the moisture content (%), mLV is the mass of the untreated leaf sample (g),
and mDR is the mass of the dry leaf sample after the drying process (g).

In Figure 3, a schematic of the experimental apparatus used for the thermal and
chemical characterization of exotic and native leaf samples collected in the PLNR is shown.

2.7. Data Analysis

Results from our investigations were expressed as the mean ± standard deviation
together with the coefficient of variation. To analyze the normal distribution of flammability
tests with 50 data points, the Kolmogorov–Smirnov normality test was used, and in cases
where variables were not normal (6% of variables), these were transformed to comply with
the assumptions of normality and homoscedasticity. In this way, the robustness of the
parametric analyses was guaranteed. EO yields were presented as a mass concentration
(%w/w), whereas the identified chemical compounds were expressed as percentages of
relative area (RA%), indicating the percentage area for each identified compound, taking as
a reference the sum of peak areas in each chromatogram. A simple linear regression analysis
was performed to determine if there was a relationship between intrinsic flammability
parameters (IT, FD, and BT; dependent variables: y), thermochemical properties (HHV,
LHV, and FP; dependent/independent variables: y/x), and natural factors (MC and EOs)
of leaf samples. The analysis aimed to establish if the flammability and thermochemical
parameters could be estimated by natural factors in tree leaves. The analysis of variance
was used with the following parameters: P: p-value, R: coefficient of correlation, and R2:
coefficient of determination, with a confidence level of 95%.

An analysis of variance (ANOVA) was used to detect significant statistical differences
between the means of each group and the HSD Tukey test was used to relate the statistical
differences. For LHV and HHV, distribution tests and multiple comparison tests were also
performed, including Fisher’s least significant difference (LSD), which uses mean values to
prove the existence of statistically significant differences between groups. All statistical
tests were performed using STATGRAPHIC Centurion XV software.
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3. Results
3.1. Ignition Time

Results from the Kolmogorov–Smirnov test showed IT to be normally distributed with
a 95% confidence interval for all analyzed forest species. Specifically, the following p-values
were obtained: Q. saponaria (0.19), C. alba (0.10), P. radiata (0.20), E. globulus (0.20), and
A. dealbata (0.19). The lowest IT was obtained for E. globulus, followed by C. alba, A. dealbata,
P. radiata, and Q. saponaria (Figure 4A), with coefficients of variation of 18.58%, 16.99%,
23.40%, 15.51%, and 16.98%, respectively. Using ANOVA, the differences between the IT
means were shown to be statistically significant due to the obtained p-value being less than
0.05 (p = 0.00), with a confidence level of 95%. In addition, the HSD Tukey test was used to
compare significant differences between the means of the formed groups with a confidence
level of 95% (see Table S1, Supplementary Materials). These results indicate the formation
of nine significantly different pairs, while the members of the pair P. radiata–Q. saponaria
were not significantly different from each other (p = 0.18).
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3.2. Flame Duration

FD values were found to be normally distributed with a 95% confidence interval for
all analyzed forest species, with p-values of 0.09, 0.20, 0.06, 0.06, and 0.20 obtained for
Q. saponaria, C. alba, P. radiata, E. globulus, and A. dealbata, respectively. The highest FD
was obtained for A. dealbata, followed by Q. saponaria, P. radiata, E. globulus, and C. alba
(Figure 4A), with coefficients of variation of 33.52%, 50.56%, 42.53%, 27.32%, and 26.53%,
respectively. Results from the ANOVA tests showed the differences between the means
of the FD variable to be statistically significant between all five forest species, with a
confidence level of 95%. Additionally, the HSD Tukey test was used to compare significant
differences between the means of the formed groups with a confidence level of 95% (see
Table S1, Supplementary Materials). The results indicated that the following pairs were
significantly different: Q. saponaria–C.alba (p = 0.02); Q. saponaria–A. delabata; C. alba–A.
dealbata; E. globulus–A. albata, and P. radiata–A. dealbata (all significances were p = 0.00).

3.3. Burning Time

BT values were found to be normally distributed with a 95% confidence interval for
all analyzed forest species, and the following p-values were found: 0.20, 0.20, 0.20, 0.09,
and 0.20, for Q. saponaria, C. alba, P. radiata, E. globulus, and A. dealbata, respectively. The
highest BT was obtained for Q. saponaria, followed by E. globulus, A. dealbata, P. radiata, and
C. alba (Figure 4A). The coefficients of variation obtained for forest species Q. saponaria,
C. alba, P. radiata, E. globulus, and A. dealbata were 16.67%, 10.62%, 14.95%, 7.18%, and 9.90%,
respectively. Using ANOVA, differences between the means of the BT variable were shown
to be statistically significant due to the obtained p-value being less than 0.05 (p = 0.00),
with a confidence level of 95%. In addition, the HSD Tukey test showed that the following
pairs presented significant differences with each other: Q. saponaria–C. alba, Q. saponaria–E.
globulus, Q. saponaria–P.radiata, Q. saponaria–A. dealbata, C. alba–E. globulus (all significances
were p = 0.00), and E. globulus–P. radiata (p = 0.00) (see Table S1, Supplementary Materials).

3.4. Flammability Index

The leaves of the studied forest species were classified based on the flammability
index proposed by Valette [37]. All sample species obtained a Fr of 100% across all 50 tests.
Forest species C. alba, E. globulus, and A. dealbata obtained an FI of 5 and therefore were
classified as extremely flammable, while Q. saponaria and P. radiata obtained an FI of 3,
classifying them as flammable species (Table 2).

Table 2. Classification of the flammability of forest species according to flammability index (FI),
based on the average ignition time (IT) and flammation frequency (Fr).

Species IT (s)
(x±s)

Fr
(%)

FI
(-) Classification

E. globulus 3.98 ± 0.74 100 5 Extremely flammable

C. alba 6.85 ± 1.16 100 5 Extremely flammable

A. dealbata 9.65 ± 2.26 100 5 Extremely flammable

P. radiata 19.64 ± 3.08 100 3 Flammable

Q. saponaria 20.99 ± 6.09 100 3 Flammable

3.5. Heat of Combustion

The obtained results were adjusted to a normal distribution with a 95% confidence
interval, showing significant differences between the means of each HHV and LHV with
p-values of less than 0.05 (p = 0.00). The highest HHV was obtained by E. globulus, followed
by A. dealbata, C. alba, P. radiata, and Q. saponaria (Figure 4B). Each HHV test was performed
in duplicate, and the coefficients of variation obtained for E. globulus, A. dealbata, C. alba,
P. radiata, and Q. saponaria were 0.24%, 0.96%, 0.37%, 0.47%, and 0.21%, respectively.
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Multiple range tests for HHV showed that only the C. alba–P. radiata pair did not exhibit
a significant difference (difference = 0.06 MJ kg−1). By comparison, the E. globulus–Q.
saponaria pair had the maximum significant difference of 2.98 MJ kg−1 (Table S2).

In the case of LHVs, the multiple range tests showed statistically significant differences
between all LHV values, with the pair A. dealbata–Q. saponaria having the highest significant
difference of 3.06 MJ kg−1. All tests were performed with a 95% confidence interval. The
highest LHV was obtained for the forest species A. dealbata, followed by E. globulus, P. radiata,
C. alba, and Q. saponaria (Figure 4B), resulting in coefficients of variation of 1.03%, 0.27%,
0.51%, 0.31%, and 0.24%, respectively (n = 2) (see Table S2, Supplementary Materials).

3.6. Flash Point

The obtained results were adjusted to a normal distribution with a confidence interval
of 95%, showing no significant differences between the means of each FP and a p-value
greater than 0.05 (p = 0.16). The lowest FP registered was found for species C. alba, followed
by E. globulus, A. dealbata, P. radiata, and Q. saponaria (Figure 4B), while the coefficients of
variation were 1.29%, 6.97%, 1.22%, 6.95%, and 7.67%, respectively. HSD Tukey tests did
not show significant differences between pairs of species with a confidence level of 95%
(see Table S2, Supplementary Materials).

3.7. Moisture Content

The obtained results were adjusted to a normal distribution with a confidence interval
of 95%, showing no significant differences between the means of each MC and a p-value less
than 0.05 (p = 0.000). Leaf samples of A. dealbata recorded the highest MC value among all
species under study, followed by E. globulus, Q. saponaria, P. radiata, and C. alba (Figure 5A).
In addition, the HSD Tukey test showed that the following groups presented significant
differences with each other between the means of each MC with a confidence level of
95%: A. delabata–C. alba, A. dealbata–P. radiata, A. dealbata–Q. saponaria, E. globulus–C. alba,
E. globulus–P. radiata, C. alba–P. radiata, C. alba–Q. saponaria, and P. radiata–Q. saponaria. By
contrast, the groups A. dealbata–E. globulus and E. globulus–Q. saponaria did not present
significant differences between the means of each MC, with a confidence level of 95% (see
Table S2, Supplementary Materials).

3.8. Essential Oils and Identification of Terpenes/Other Chemical Compounds in Leaves

Figure 5A shows the content of EOs in the leaves of the forest species under study,
where E. globulus had the highest concentration of EOs, followed by P. radiata, C. alba,
A. dealbata, and Q. saponaria. A total of 58 chemical compounds were identified comprising
sesquiterpenes (ST), aliphatic hydrocarbons (AH), esters (ES), ketones (KO), alcohols (OH),
diterpenes (DT), and triterpenes (TP), as shown in Figure 5B. Differences in predominant
compound classes were observed according to each species. The highest terpene content
was found in E. globulus with 87% of ST, while AH was dominant in EOs of A. dealbata and
Q. saponaria, reaching levels of 81% and 45%, respectively. In contrast, ES represented 50% of
the EO concentration in P. radiata, while KO was mainly present in C. alba samples, reaching
36% of the relative area (RA). The major compounds identified were alloaromadendrene (ST;
47.37%), methyl dodecanoate (ES; 27.8%), nonacosane (AH; 78.4%), 16-hentriacontanone
(KO; 35.6%), and nonacosane (AH; 31.99%) for E. globulus, P.radiata, A. dealbata, C. alba, and
Q. saponaria, respectively (see Table S3, Supplementary Materials).

3.9. Relationship between Thermochemical Parameters and Natural Drivers of the Leaves

Figure 6 shows the main relationships obtained between the EO concentration, ther-
mochemical properties (FP and LHV), and intrinsic flammability parameters of the IT and
FD of leaf samples. The EOs showed a moderately strong negative correlation with the IT
parameter (R = −0.58) (Figure 6A), i.e., as the concentration of EOs contained in the leaves
increases, there is a decrease in the ignition time, leading to an increase in flammability.
Furthermore, the FP showed a relatively strong positive correlation with the IT parameter
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(R = −0.91) (Figure 6B); as the flash point of leaves increases, there is an increase in the
ignition time (decrease in flammability). On the other hand, the LHV showed a moderately
strong positive correlation (R = −0.50) with the FD parameter (Figure 6C), implying that as
the energy released by the leaves in a combustion process increases, an increase in flame
duration is generated.
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Other relationships can be found in Table S4 (Supplementary Materials), from which
we highlight that moisture content showed a weak negative correlation (R = −0.15) with the
IT parameter, which is contradictory to results found in other research [45,84,85], where MC
significantly affected leaf IT (positive effect), confirming that leaves with a high moisture
content took longer to ignite.
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4. Discussion
4.1. Variation in Flammability of Forest Species

Based on the arithmetic mean of IT, our results suggest that tree species E. globulus
and C. alba showed a higher predisposition to foliage ignition and were therefore more
vulnerable to the initiation of crown fire events. In contrast, the least vulnerable species to
foliage ignition were Q. saponaria and P. radiata.

It is possible to characterize the time at which the combustion energy is irradiated
with greater intensity after ignition through the FD parameter; therefore, in a foliage
fire, we would expect that the species A. dealbata and Q. saponaria would be at the most
risk of propagation by irradiation when compared to the arithmetic mean of the FD of
this irradiation. Specimens of C. alba and E. globulus showed the lowest mean FD of this
parameter. Similarly, the parameter BT can represent the time at which incandescent
material exists and could represent a source of energy for new ignitions. In this sense, the
species Q. Saponaria and E. globulus had the highest arithmetic means of BT, in contrast to
C. alba and P. radiata, which presented the lowest arithmetic means of BT.

The major contribution of our research is represented by the flammability parameters
obtained for the native species C. alba and Q. saponaria, as no previous study in Chile has
reported these parameters using Valette’s classification [37]. A remarkable result is related
to the species C. alba, which obtained a low IT of 6.85 ± 1.16 s (FI = 5: extremely flammable),
similar to the exotic forest species E. globulus with an IT parameter of 3.98 ± 0.74 s. If these
species are in front of an ignition source that does not require high heat fluxes (cigarette
butts, sparks, poorly extinguished campfires, etc.), the species will ignite faster, starting
crown fires.

No specimens were found to be non-flammable according to Valette’s classification,
which together with the values obtained for IT, FD, and BT parameters allow us to estimate
the limitations that some individuals of native species could present for consideration in
the creation of landscapes that are resilient to climate change and its effects [86]. The values
of the thermophysical properties show that both native and exotic species can be risky and
vulnerable to heat sources, fire spread, and prolonged fire persistence during fire events.

It must be pointed out that the obtained results have limitations in terms of being
scaled to landscape levels, since the heat transfer processes in experiments are different from
those occurring in an uncontrolled environment [43,44], and we did not consider climatic
variables such as those by the National Forestry Corporation CONAF (ignition probability
index as a wildfire prevention strategy). However, characterizing fuels with standardized
scientific parameters allows us to estimate the behavior of vegetation in wildfires, as well
as to identify the vulnerability or danger of plant species on a quantitative basis. In this
regard, our results were consistent with those reported by other studies carried out in
different places with similar climatic conditions with exotic species (E. globulus, P. radiata,
and A. dealbata) [39,44,87,88].

4.2. Variation of Heating Values

Statistically significant differences were found regarding HHV and LHV for all forest
species investigated in our study. This can be attributed to the fact that the heat generated
from forest fuel is related to the chemical composition, structure, and moisture content of
the fuel [51].

The results from our study regarding HHV correspond to those reported by Guerrero
et al., 2020 [6] and, in order to follow the same classification criteria used in their study,
our study species were classified as follows: exotic species E. globulus and A. dealbata were
categorized as Class 5, P. radiate as Class 4, native species C. alba as Class 4, and Q. saponaria
as Class 2 based on their heat levels at combustion. Notably, the exotic species had the
highest HHV, with E. globulus and P. radiata previously reported to have a high HHV [89].
However, the native species C. alba obtained a similar value to P. radiata, indicating it to be
a high-risk species.
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Regarding LHV, our results showed higher values for the majority of analyzed species
compared to those reported by Guerrero et al. [6], with the exception of C. alba, where a
slight decrease was obtained compared to the 2017–2018 summer. This increase in LHV
possibly indicates the presence of an external influencing factor, although the heating
value varies according to species and according to, among others, the energy value of
EOs, lignocellulosic material, and the MC of the fuel [51]. Therefore, water stress, periods
of drought, and heat waves registered in Valparaíso and the central–southern regions of
Chile could affect the thermochemical properties of forest fuel. In this context, various
studies have highlighted the ability of certain species to increase the content of chemical
compounds in response to abiotic factors as a protection mechanism and physiological
adaptations, for example, the increase in essential oils [85,90].

The forest species A. dealbata and E. globulus had the highest LHV value of 20.38 ±
0.21 MJ kg−1 and 19.64 ± 0.05 MJ kg−1, respectively, compared to Q. saponaria with the
lowest LHV of 17.32 ± 0.04 MJ kg−1. As LHV is obtained during combustion in open
air when water evaporates to the environment (Byram intensity) [54], it represents usable
heat, and therefore A. dealbata and E. globulus are more likely to generate high-intensity
fires. In comparison, Q. saponaria, which had the lowest LHV, represents a lower risk
as a heat source than species with a higher LHV. Additionally, when comparing FD to
LHV (Figure 6C), a moderately strong positive relationship between these parameters is
observed, i.e., as LHV increases, an increasing trend in FD is observed. In particular, the
species A. dealbata may generate a higher risk of fire spread due to the fact that, in the flame
phase, it releases a high amount of energy for a longer period of time compared to other
tree species.

Finally, our study focuses on flammability and heating value, two thermochemical
properties that should not be viewed as independent components, but rather as a group of
characteristics related to certain forest species that can be investigated in association with
other variables such as climatic conditions, diversity, density, and geography. For example,
the forest species E. globulus and A. dealbata were classified as extremely flammable (FI = 5)
and obtained the highest LHV and HHV (extremely high risk), while the native species
C. alba was also found to be an extremely flammable species (FI = 5) and was classified as
a high-risk species according to its HHV. Based on these results, the three species have a
high predisposition to ignite in the presence of a heat source. Furthermore, they have a
high risk of becoming heat sources, which contributes to the overall effect of forest fires.
In contrast, Q. saponaria showed interesting results as it was the least flammable species
(flammable, FI = 3) and had the lowest LHV and HHV (low risk); therefore, it is a species
that could reduce the occurrence, spread, and effects of forest fires.

4.3. Drivers of Leaf Flammability: Essential Oils, Chemical Compounds, and Moisture Content

The results obtained show that the concentration of EOs was the most relevant natural
factor due to the negative and moderately strong relationship with the IT parameter,
i.e., increased concentrations of EOs in the leaves can result in a decrease in IT and thus
generate an increase in the flammability of the vegetation. For example, E. globulus had
the lowest IT and highest FI compared to the other exotic species. This could be explained
based on our results, which showed that this species had the highest content of EOs
(6.71 ± 0.28% w/w), composed mainly of sesquiterpenes (87.35% RA), highlighting a
high presence of alloaromadendrene, which has an FP of 106.5 ◦C. This indicates that,
in the presence of an ignition source, the species will ignite at a low temperature and
concentration [85]. Other studies [45,74] have reported that leaves of the genus eucalyptus
(E. globulus and E. camaldulensis) are highly flammable due to the high content of EOs
in their leaves; thus, it acts as a fire enhancer, accelerating the ignition time [91]. The
oils are found in, among others, the bark, branches, leaves, and flowers of the plant, and
consist of chemical compounds with low flash points, such as terpenes (monoterpenes
and sesquiterpenes), for example, eucalyptol, a monoterpene that is the main component
extracted from eucalyptus leaves and has a low FP (FP = 49 ◦C) [92]. In addition, high
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rates of isoprene and monoterpene emissions have been identified in eucalyptus trees [93],
generating a flammable atmosphere that can contribute to the formation of forest fires.

Regarding the native tree species, the high flammability of C. alba can be attributed to
the fact that it registered a high concentration of EOs (4.90 ± 0.28%). Moreover, this species
presented several highly flammable sesquiterpenes, where a very particular chemical com-
pound called 16-hentriacontanone was identified, a ketone with a very low FP (35.6 ◦C).
We think this compound could give flammable properties to C. alba leaves. In addition,
flammable chemical compounds (monoterpenes and sesquiterpenes) have been reported
for C. alba, for example α-terpineol, eucalyptol, phellandrene, terpinen-4-ol, and p-cymene
with flash points of 88, 51, 47, 79, and 47 ◦C, respectively [94,95]. In contrast, the native
species Q. saponaria showed the highest IT. This could be attributed to its low EO content
(0.58 ± 0.29% w/w), which was 12- and 8-times lower than E. globulus and C. alba, respec-
tively. Furthermore, aliphatic hydrocarbons of higher FP were mainly identified in the EOs
of Q. saponaria, representing a possible factor capable of explaining its low flammability.
These differences in flammability between native species may indicate that Q. saponaria
can develop a more adapted structure in response to natural conditions due to drought
and high temperatures, such as an increase in the production of aliphatic hydrocarbons
(higher FP) or an increase in the thickness of the epidermis (characteristics of sclerophyllous
leaves), which possibly allow greater water retention and chemical compounds, making
the plant less flammable.

It is important to highlight the forest species A. dealbata, which had the second lowest
IT and can be classified as extremely flammable (FI = 5), despite having a three times
lower content of EOs (2.26 ± 0.29% w/w) compared to E. globulus, where monoterpenes
and sesquiterpenes with low flash points were not identified, and it was the first species
with the highest MC (127 ± 1.41%) among all species under study. This could be related to
the fact that other plant characteristics can affect flammability; for example, Murray et al.,
2013 [96] showed that a low IT (high flammability) in species of the genus Acacia (A. linifolia,
A. longifolia, A. suaveolens, A. ulicifolia, and A. terminalis) had a strong relationship with
the large size of leaves. However, this study shows that it is important to consider other
parameters such as the thickness of the cuticles contained in the upper layer of the leaves.
Another factor to consider is the phenological state of the leaf, as was studied by Valette,
1990 [37], who reported similar results to ours, but in phases where A. dealbata leaves are
growing and hardened (FI = 4–5), while the leaves in their mature phase registered a lower
flammability (FI = 1–4). Another report by Hachmi et al., 2011 [39] showed that the same
genus and species (Acacia mollissima) is extremely flammable, despite having a MC higher
than 140%, which is attributed to the existence of other natural factors, such as EOs that
can interact with the MC.

The species P. radiata was the least flammable of the exotic species (FI = 3); however,
it registered a low MC (81 ± 4.24%), a high content of EOs (5.01 ± 0.29% w/w), and a
diversity of sesquiterpenes characterized by low flash points such as (E)-β-caryophyllene,
α-bergamotene, cis-α-bisabolene, alloaromadendrene, germacrene D, α-farnesene, and
α-chamigrene. This confirms, as was in the case of A. dealbata, that other interspecific
factors of leaves play a fundamental role in flammability, principally the leaf anatomy and,
in the case of P. radiata, the leaf shape (elongated and rigid needles). This can be explained
as described by De Lillis et al. 2009 [97], where it was demonstrated that the needles of
Pinus halapensis, a highly resinous conifer tree species, are a weak emitter of monoterpene,
but are capable of storing a large amount of isoprenoids, which are released only when
temperatures are very high. This occurs because there are resistant structures that surround
the pine resin ducts, leaving them hermetically sealed, and this possibly cancels the effect
of terpenes on flammability.

In summary, EOs are a complex mixture of chemical compounds comprising mostly
low-molecular-mass volatile organic compounds (under 300 g mol−1), such as hydrocar-
bons, alcohols, ethers, aldehydes, ketones, esters, amines, amides, and phenols. Terpenes
(monoterpenes and sesquiterpenes), in particular, have low flash points [98]. Therefore,
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these EOs can act as fire drivers that increase the flammability of forest species’ leaves.
Dimitrakopoulos and Papaioannou, 2001 [91] showed that the leaves of the Mediterranean
forest species Laurus nobilis and Eucalyptus camaldulensis were extremely flammable due
to their high contents of flammable volatile compounds present in EOs. Thus, forest fuels
rich in volatile essential oils (e.g., Eucalyptus, Laurel, Pinus, and Pistacia) are flammable
due to their low IT [91].

In particular, our MC results were similar to those reported by Bianchi et al., 2019 [84],
Ganteaume, 2018 [45] and Grootemaat et al., 2015 [99], with results of between 72–253%,
72–213%, and 68–231% respectively. These results can be attributed to differences in the
physiological processes, photosynthetic capacity, and carbon storage of leaves, which
change the biochemical components of dry matter, such as crude fat (essential oils and
impurities) and structural or nonstructural compounds that cause temporary changes in
the MC [100,101].

In addition to the natural factors aforementioned, it is important to highlight the
positive relationship between the FP and IT parameters, where it can be noticed that
as FP is reduced, there is a decrease in the IT. This relationship can be attributed to the
identification of low FP chemical compounds found in EOs. Low flash point chemical
compounds (mainly monoterpenes and ketones) were identified in the different exotic and
native species: aromadendrene (ST, FP: 106 ◦C) in E. globulus; (E)-β-caryophyllene (ST,
FP: 104 ◦C) in P. radiata; nonacosane (AH, FP: 291 ◦C) in A. dealbata; heptacosane (AH, FP:
268 ◦C) in C. alba; and hexadecane (AH, FP: 135 ◦C) in Q. saponaria. Such terpenoids and
aliphatic hydrocarbons are highly flammable; therefore, when accumulated in leaves and
in the presence of an ignition source, they would ignite at relatively low temperatures and
concentrations [57].

5. Conclusions

This research has provided new knowledge on the classification of forest species
constantly affected by forest fires based on the flammability index proposed by Valette [37].
Regarding the evaluated tree species, all are flammable (Q. saponaria, P. radiata) and in
some cases extremely flammable (C. alba, E. globulus, A. delabata); however, differences
are observed both in the predisposition to ignition (IT ratio, EOs, FP) and in the ability
to spread fire by irradiation (FD and LHV ratio). Furthermore, it was shown that the
high concentration of EOs contained in the leaves decreases the ignition time, and, there-
fore, they can be considered as flammability drivers in the predominant species of the
Mediterranean climate.

From the analysis of the relationships between the intrinsic properties of flammability,
thermochemistry, and the concentration and composition of essential oils, it is not possible
to affirm that there are differences in the flammability of native species when compared to
exotic species without distinction. In contrast, there are relevant differences between the
behaviors of the species C. alba (extremely flammable) and Q. saponaria (flammable).

It must be emphasized that the results presented in this study contribute to the
establishment of a flammability classification according to the evolution of the risk of
fire initiation presented by the species, taking into account their role in the different
forest formations in the country. In this regard, this information will help to (i) integrate
flammability criteria into fire risk indices, (ii) establish risk charts based on vegetation maps,
and (iii) implement green barriers as a tool for reducing the risk of damage to vulnerable
areas such as urban–forest interfaces and conservation areas.

Based on our results, we recommend that organizations dedicated to the management
and handling of forest fires, primarily the National Forestry Corporation (CONAF), focus
on the development of preventive measures that consider the high flammability and energy
content of the forest species C. alba, E. globulus, and A. dealbata.

Finally, future research should consider an extension of the geographical and tem-
poral scale of study, expanding the sampling area to other regions of south-central Chile
frequently affected by forest fires, incorporating thermal and chemical characterization
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of leaf litter, and systematically carrying out analyses over time in order to develop a
more representative flammability classification based on natural factors of Mediterranean
forest vegetation.
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Identification of organic compounds by chromatography (GC/MS) contained in the essential oils
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